Nontrivial coherent families of functions Lecture 2

Chris Lambie-Hanson

Institute of Mathematics Czech Academy of Sciences

Winter School 2022

Review

Recall:

- For $f \in {}^{\omega}\omega$, $I(f) := \{(i,j) \in \omega^2 \mid j \le f(i)\}.$
- Suppose that Φ = ⟨φ_f : I(f) → ℤ | f ∈ ^ωω⟩ is a family of functions.
 - Φ is coherent if $\varphi_f \upharpoonright I(f \land g) =^* \varphi_g \upharpoonright I(f \land g)$ for all $f, g \in {}^{\omega}\omega$.
 - Φ is *trivial* if there is ψ : ω² → Z such that φ_f =* ψ ↾ I(f) for all f ∈ ^ωω.
- $\mathfrak{d} = \aleph_1 \Rightarrow$ there exists a nontrivial coherent family.
- After adding ℵ₂-many Cohen reals, every coherent family is trivial.
- $OCA \Rightarrow$ every coherent family is trivial.

II. Homological origins

Inverse systems

Definition

Suppose that (Γ, \leq) is a directed set. An *inverse system* (of abelian groups) indexed by Γ is a family

- $\mathbf{A} = \langle A_u, \ \pi_{uv} \mid u \leq v \in \Gamma \rangle$ such that:
 - for all u ∈ Γ, A_u is an abelian group;
 - for all u ≤ v ∈ Γ, π_{uv} : A_v → A_u is a group homomorphism;
 - for all $u \leq v \leq w \in \Gamma$,

 $\pi_{uw} = \pi_{uv} \circ \pi_{vw}.$

Level morphisms

If **A** and **B** are two inverse systems indexed by the same directed set, Γ , then a *level morphism* from **A** to **B** is a family of group homomorphisms $\mathbf{f} = \langle f_u : A_u \to B_u \mid u \in \Gamma \rangle$ such that, for all $u \leq v \in \Gamma$, $\pi^B_{uv} \circ f_v = f_u \circ \pi^A_{uv}$.

With this notion of morphism, the class of all inverse systems indexed by a fixed directed set Γ becomes a well-behaved category Ab^{Γ^{op}} (in particular, it is an abelian category).

Inverse limits

If **A** is an inverse system indexed by Γ , then we can form the *inverse limit*, lim **A**, which is itself an abelian group. Concretely, lim **A** can be seen as the subgroup of $\prod_{u \in \Gamma} A_u$ consisting of all sequences $\langle a_u \mid u \in \Gamma \rangle$ such that, for all $u \leq v \in \Gamma$, we have $a_u = \pi_{uv}(a_v)$.

If **A** and **B** are inverse systems and **f** : $\mathbf{A} \to \mathbf{B}$, then **f** lifts to a group homomorphism $\lim \mathbf{f} : \lim \mathbf{A} \to \lim \mathbf{B}$. Concretely, this is done by letting $\lim \mathbf{f}(\langle a_u \mid u \in \Gamma \rangle) = \langle f_u(a_u) \mid u \in \Gamma \rangle$ for all $\langle a_u \mid u \in \Gamma \rangle \in \lim \mathbf{A}$.

This turns lim into a *functor* from the category $Ab^{\Gamma^{op}}$ of inverse systems indexed by Γ to the category Ab of abelian groups.

Question: How "nice" is this functor?

Exact sequences

In the category of inverse systems, kernels, images, and quotients can be defined pointwise in the obvious way. For example, if $\mathbf{f} : \mathbf{A} \to \mathbf{B}$ is a level morphism, then ker(\mathbf{f}) can be seen as the inverse system $\langle \ker(f_u), \pi_{uv} | u \leq v \in \Gamma \rangle$, where π_{uv} is simply $\pi_{uv}^A \upharpoonright \ker(f_v)$.

We say that a pair of morphisms $A \xrightarrow{f} B \xrightarrow{g} C$ is *exact at* B if $\operatorname{im}(f) = \ker(g)$. A *short exact sequence* is a sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ that is exact at A, B, and C.

In a short exact sequence as above, we have $\ker(f) = 0$ (f is *injective*) and $\operatorname{im}(g) = C$ (g is *surjective*). It can be helpful to think of A as a *subobject* of B and to think of C as the quotient B/A.

Exact functors

A functor *F* between abelian categories is said to be *exact* if it preserves short exact sequences, i.e., if, whenever $\mathbf{0} \rightarrow \mathbf{A} \xrightarrow{\mathbf{f}} \mathbf{B} \xrightarrow{\mathbf{g}} \mathbf{C} \rightarrow \mathbf{0}$ is exact in the source category of *F*, $\mathbf{0} \rightarrow F\mathbf{A} \xrightarrow{F\mathbf{f}} F\mathbf{B} \xrightarrow{F\mathbf{g}} F\mathbf{C} \rightarrow \mathbf{0}$ is exact in the target category of *F*. The inverse limit functor is *left exact*: if $\mathbf{0} \rightarrow \mathbf{A} \xrightarrow{\mathbf{f}} \mathbf{B} \xrightarrow{\mathbf{g}} \mathbf{C}$ is exact at **A** and **B**, then $\mathbf{0} \rightarrow \lim \mathbf{A} \xrightarrow{\lim \mathbf{f}} \lim \mathbf{B} \xrightarrow{\lim \mathbf{g}} \lim \mathbf{C}$ is exact at

lim **A** and lim **B**. However, it fails to be exact, i.e., even if $im(\mathbf{g}) = \mathbf{C}$, we might have $im(\lim \mathbf{g}) \neq \lim \mathbf{C}$.

The failure of lim to be exact essentially amounts to the failure of lim to preserve quotients: if the quotient system \mathbf{B}/\mathbf{A} is defined, then it need not be the case that $\lim \mathbf{B}/\mathbf{A} \cong \lim \mathbf{B}/\lim \mathbf{A}$.

lim $\mathbf{A} = \lim \mathbf{B} = 0$ and $\lim \mathbf{C} = \mathbb{Z}/3$, so applying lim to this short exact sequence yields $0 \to 0 \to 0 \to \mathbb{Z}/3 \to 0$, which is not exact at $\mathbb{Z}/3$.

Derived functors

Given any left exact functor F, there is a general procedure for producing a sequence of (right) derived functors $\langle F^n | n \in \omega \setminus \{0\} \rangle$ that "measure" the failure of the functor F to be exact. These derived functors then take short exact sequences

$$\mathbf{0} \longrightarrow \mathbf{A} \stackrel{\mathsf{f}}{\longrightarrow} \mathbf{B} \stackrel{\mathsf{g}}{\longrightarrow} \mathbf{C} \longrightarrow \mathbf{0}$$

to long exact sequences

n

$$\longrightarrow F\mathbf{A} \xrightarrow{F\mathbf{f}} F\mathbf{B} \xrightarrow{F\mathbf{g}} F\mathbf{C} \longrightarrow$$
$$F^{1}\mathbf{A} \xrightarrow{F^{1}\mathbf{f}} F^{1}\mathbf{B} \xrightarrow{F^{1}\mathbf{g}}^{\delta} F^{1}\mathbf{C} \longrightarrow$$
$$F^{2}\mathbf{A} \xrightarrow{F^{2}\mathbf{f}} F^{2}\mathbf{B} \xrightarrow{F^{2}\mathbf{g}}^{\delta} F^{2}\mathbf{C} \longrightarrow \dots$$

We will be interested in the derived functors $(\lim^n | n \in \omega \setminus \{0\})$.

The system A

Consider the directed set (${}^{\omega}\omega, \leq$), and define an inverse system $\mathbf{A} = \langle A_f, \pi_{fg} \mid f \leq g \in {}^{\omega}\omega \rangle$ as follows:

• $A_f = \bigoplus_{I(f)} \mathbb{Z}$

• $\pi_{fg}: A_g \to A_f$ is the natural projection map.

In other words, A_g is the group of finitely supported functions $\varphi : I(g) \to \mathbb{Z}$, and, if $f \leq g$, then π_{fg} takes such a function φ to $\varphi \upharpoonright I(f)$.

Question: What is $\lim A$? Answer: $\lim A \cong \bigoplus_{\omega} \prod_{\omega} \mathbb{Z}$.

Define $\mathbf{B} = \langle B_f, \pi_{fg} \mid f \leq g \in {}^{\omega}\omega \rangle$ similarly by letting $B_f = \prod_{I(f)} \mathbb{Z}$.

Question: What is $\lim \mathbf{B}$? **Answer:** $\lim \mathbf{B} \cong \prod_{\omega^2} \mathbb{Z}$.

There is a natural inclusion morphism $\mathbf{i} : \mathbf{A} \to \mathbf{B}$ and a quotient morphism $\mathbf{q} : \mathbf{B} \to \mathbf{B}/\mathbf{A} = \langle B_f/A_f, \pi_{fg} | f \leq g \in {}^{\omega}\omega \rangle$. Then the short exact sequence

$$\mathbf{0} \longrightarrow \mathbf{A} \stackrel{i}{\longrightarrow} \mathbf{B} \stackrel{q}{\longrightarrow} \mathbf{B}/\mathbf{A} \longrightarrow \mathbf{0}$$

gives rise to the long exact sequence

$$0 \longrightarrow \lim \mathbf{A} \xrightarrow{\lim \mathbf{i} \to} \lim \mathbf{B} \xrightarrow{\lim \mathbf{q}} \lim \mathbf{B}/\mathbf{A} \xrightarrow{\delta}$$
$$\longrightarrow \lim^{\mathbf{1}} \mathbf{A} \xrightarrow{\lim^{1} \mathbf{i}} \lim^{\mathbf{1}} \mathbf{B} \xrightarrow{\lim^{1} \mathbf{q}} \lim^{\mathbf{1}} \mathbf{B}/\mathbf{A} \xrightarrow{\delta}$$
$$\longrightarrow \lim^{2} \mathbf{A} \xrightarrow{\lim^{2} \mathbf{i}} \lim^{2} \mathbf{B} \xrightarrow{\lim^{2} \mathbf{q}} \lim^{2} \mathbf{B}/\mathbf{A} \longrightarrow \dots$$

It can be shown that $\lim^{n} \mathbf{B} = 0$ for all $n \in \omega \setminus \{0\}$, so this long exact sequence becomes

$$0 \longrightarrow \lim \mathbf{A} \xrightarrow{\lim \iota} \lim \mathbf{B} \xrightarrow{\lim \mathbf{q}} \lim \mathbf{B}/\mathbf{A}$$

$$\longrightarrow \lim^{\delta} \mathbf{A} \longrightarrow 0 \longrightarrow \lim^{\delta} \mathbf{B}/\mathbf{A}$$

$$\longrightarrow \lim^{\delta} \mathbf{A} \longrightarrow 0 \longrightarrow \lim^{\delta} \mathbf{B}/\mathbf{A} \longrightarrow \dots$$

It follows that $\lim^{1} \mathbf{A} \cong \frac{\lim \mathbf{B}/\mathbf{A}}{\operatorname{im}(\lim \mathbf{q})}$ and, for $n \ge 1$, $\lim^{n+1} \mathbf{A} \cong \lim^{n} (\mathbf{B}/\mathbf{A})$.

We have $\lim^{1} \mathbf{A} \cong \frac{\lim \mathbf{B}/\mathbf{A}}{\lim(\lim \mathbf{q})}$.

What is $\lim \mathbf{B}/\mathbf{A}$? Recall that

$$\mathbf{B}/\mathbf{A} = \left\langle \prod_{I(f)} \mathbb{Z}/\bigoplus_{I(f)} \mathbb{Z}, \ \pi_{fg} \ \middle| \ f \leq g \in {}^{\omega}\omega \right\rangle.$$

lim **B**/**A** therefore consists of families $\langle [\varphi_f] | f \in {}^{\omega}\omega \rangle$ such that

- $\varphi_f \in B_f$, i.e., $\varphi_f : I(f) \to \mathbb{Z}$;
- [φ_f] is the equivalence class of all functions φ : I(f) → Z for which φ_f - φ ∈ A_f, i.e., all functions φ : I(f) → Z that differ from φ_f in only finitely many places;
- for all $f \leq g \in {}^{\omega}\omega$, we have $[\varphi_f] = [\pi_{fg}\varphi_g] = [\varphi_g \upharpoonright I(f)]$, i.e., $\varphi_f = {}^*\varphi_g \upharpoonright I(f)$.

Thus, $\lim \mathbf{B}/\mathbf{A}$ consists precisely of (equivalence classes of) coherent families of functions!

We have $\lim^{1} \mathbf{A} \cong \frac{\lim \mathbf{B}/\mathbf{A}}{\lim(\lim q)}$ and $\lim \mathbf{B}/\mathbf{A}$ consists of equivalence classes of coherent families of functions.

What is $\operatorname{im}(\operatorname{lim} \mathbf{q})$? $\operatorname{lim} \mathbf{q}$: $\operatorname{lim} \mathbf{B} \to \operatorname{lim} \mathbf{B}/\mathbf{A}$. Recall that $\operatorname{lim} \mathbf{B} \cong \prod_{\omega^2} \mathbb{Z}$, so $\operatorname{lim} \mathbf{B}$ can be thought of as the set of all $\psi : \omega^2 \to \mathbb{Z}$. Such a function ψ gets sent by $\operatorname{lim} \mathbf{q}$ to $\langle [\psi \upharpoonright I(f)] \mid f \in {}^{\omega}\omega \rangle$, which is (the equivalence class of) a coherent family that is *trivial*, as witnessed by ψ .

Also, (the equivalence class of) every trivial coherent family lies in im(lim **q**): if $\langle \varphi_f | f \in {}^{\omega}\omega \rangle$ is trivialized by $\psi : \omega^2 \to \mathbb{Z}$, then $\langle [\varphi_f] | f \in {}^{\omega}\omega \rangle = \lim \mathbf{q}(\psi)$.

So we can think of $\lim^{1} \mathbf{A}$ as coherent families of functions trivial coherent families of functions. In particular, $\lim^{1} \mathbf{A} = 0$ if and only if every coherent family of functions is trivial.

2-dimensional nontrivial coherence

Definition

Let
$$\Phi = \langle \varphi_{fg} : I(f \wedge g) \to \mathbb{Z} \mid f, g \in {}^{\omega}\omega \rangle.$$

- 1 Φ is alternating if $\varphi_{fg} = -\varphi_{gf}$ for all $f, g \in {}^{\omega}\omega$.
- 2 Φ is 2-coherent if it is alternating and φ_{fg} + φ_{gh} =^{*} φ_{fh} for all f, g, h ∈ ^ωω. (All functions restricted to I(f ∧ g ∧ h).)
- 3Φ is 2-trivial if there is a family

$$\Psi = \langle \psi_f : I(f) \to \mathbb{Z} \mid f \in {}^{\omega}\omega \rangle$$

such that $\psi_g - \psi_f =^* \varphi_{fg}$ for all $f, g \in {}^{\omega}\omega$.

A 2-trivial family is 2-coherent. A non-2-trivial 2-coherent family Φ is an example of incompactness: each *local family* { $\varphi_{fg} \mid f, g < h$ } (for a fixed $h \in {}^{\omega}\omega$) is 2-trivial, as witnessed by the family $\langle -\varphi_{fh} \mid f < h \rangle$, but the entire family is not.

Coherence and triviality can be reframed in terms of oriented sums of functions indexed by maximal faces of simplices whose vertices are elements of ${}^{\omega}\omega$. For a finite sequence $\vec{f} = \langle f_0, \ldots, f_{n-1} \rangle$, let $I(\vec{f})$ denote $I(f_0) \cap \ldots \cap I(f_{n-1})$. In particular, we let $I(\emptyset) = \omega^2$.

A 1-dimensional family $\Phi = \langle \varphi_f | f \in {}^{\omega}\omega \rangle$ is *coherent* if the oriented sum on the boundary of every 1-simplex vanishes mod finite:

 $f_{g^{+}(-\Psi_{f})=*D$

It is *trivial* if the information in the 1-dimensional family Φ is contained (mod finite) in a 0-dimensional family $\langle \psi_{\emptyset} : I(\emptyset) \to \mathbb{Z} \rangle$.

A 2-dimensional family $\Phi = \langle \varphi_{fg} : I(f,g) \to \mathbb{Z} \mid f,g \in {}^{\omega}\omega \rangle$ is *coherent* if the oriented sum on the boundary of every 2-simplex vanishes mod finite:

A 2-dimensional family $\Phi = \langle \varphi_{fg} : I(f,g) \to \mathbb{Z} \mid f,g \in {}^{\omega}\omega \rangle$ is *trivial* if the information in the 2-dimensional family Φ is contained (mod finite) in a 1-dimensional family $\langle \psi_f : I(f) \to \mathbb{Z} \mid f \in {}^{\omega}\omega \rangle$:

A 3-dimensional family $\Phi = \langle \varphi_{fgh} : I(f, g, h) \to \mathbb{Z} \mid f, g, h \in {}^{\omega}\omega \rangle$ is *coherent* if the oriented sum on the boundary of every 3-simplex vanishes mod finite:

A 3-dimensional family $\Phi = \langle \varphi_{fgh} : I(f, g, h) \to \mathbb{Z} \mid f, g, h \in {}^{\omega}\omega \rangle$ is *trivial* if the information in the 3-dimensional family Φ is contained (mod finite) in a 2-dimensional family $\langle \psi_{fg} \mid f, g \in {}^{\omega}\omega \rangle$:

n-dimensional nontrivial coherence

Given a sequence $\vec{f} = (f_0, \ldots, f_{n-1})$ and i < n, $\vec{f'}$ is the sequence of length n-1 formed by removing f_i from \vec{f} .

Definition

Fix
$$n \geq 2$$
, and let $\Phi = \left\langle \varphi_{\vec{f}} : I(\wedge \vec{f}) \to \mathbb{Z} \mid \vec{f} \in ({}^{\omega}\omega)^n \right\rangle$.

- 1 Φ is alternating if $\varphi_{\vec{f}} = sgn(\sigma)\varphi_{\sigma(\vec{f})}$ for all $\vec{f} \in ({}^{\omega}\omega)^n$ and all permutations σ .
- 2 Φ is *n*-coherent if it is alternating and $\sum_{i=0}^{n} (-1)^{i} \varphi_{\vec{f}^{i}} =^{*} 0$ for all $\vec{f} \in ({}^{\omega}\omega)^{n+1}$.
- 3 Φ is *n*-trivial if there is an alternating family

$$\left\langle \psi_{\vec{f}} : I(\wedge \vec{f}) \to \mathbb{Z} \mid \vec{f} \in (^{\omega}\omega)^{n-1} \right\rangle$$

such that $\sum_{i=0}^{n-1} (-1)^i \psi_{\vec{f}^i} =^* \varphi_{\vec{f}}$ for all $\vec{f} \in ({}^{\omega}\omega)^n$.

limⁿ A and nontrivial coherence

Coherent and *trivial* can now be thought of as 1-coherent and 1-trivial.

Theorem (Mardešić-Prasolov (n = 1), '88, [3], Bergfalk $(n \ge 2)$, '17, [1]) Fix $n \ge 1$. Then $\lim^{n} \mathbf{A} = 0$ if and only if every n-coherent family $\Phi = \left\langle \varphi_{\vec{f}} \mid \vec{f} \in ({}^{\omega}\omega)^{n} \right\rangle$

is n-trivial.

Thus, to prove that $\lim^{n} \mathbf{A} = 0$, it suffices to show that every *n*-coherent family is *n*-trivial.

Additivity of homology

Definition

A homology theory is *additive* on a class of topological spaces C if, for every natural number p and every family $\{X_i \mid i \in J\}$ such that each X_i and $\coprod_J X_i$ are in C, we have

$$\bigoplus_{J} \mathrm{H}_{p}(X_{i}) \cong \mathrm{H}_{p}(\coprod_{J} X_{i})$$

via the map induced by the inclusions

$$X_i \hookrightarrow \coprod_J X_i.$$

Additivity of strong homology

Let X^n denote the *n*-dimensional infinite earring space, i.e., the one-point compactification of an infinite countable sum of copies of the *n*-dimensional open unit ball. Let $\bar{\mathrm{H}}_p(X)$ denote the p^{th} strong homology group of X.

Theorem (Mardešić-Prasolov, '88, [3]) Suppose that 0 are natural numbers. Then

$$\bigoplus_{\mathbb{N}} \bar{\mathrm{H}}_{\rho}(X^n) = \bar{\mathrm{H}}_{\rho}(\coprod_{\mathbb{N}} X^n)$$

if and only if $\lim^{n-p} \mathbf{A} = 0$.

Consequently, if strong homology is additive on closed subsets of Euclidean space, then $\lim^{n} \mathbf{A} = 0$ for all $n \ge 1$.

An infinite earring (X^1)

Condensed mathematics

The question of the consistency of $\lim^{n} \mathbf{A} = 0$ for $n \ge 1$ arose independently in recent work of Clausen and Scholze on *condensed mathematics*, a new approach to doing algebra in situations in which the algebraic structures carry topologies. They introduce the category of *condensed abelian groups*, which is a much nicer category algebraically than the category of *topological abelian groups*. The natural question of whether pro-abelian groups embed fully faithfully into condensed abelian groups is equivalent, in its simplest case, to the question of whether $\lim^{n} \mathbf{A} = 0$ for $n \ge 1$.

Looking ahead

We are now interested in the following general questions:

Question

What can be said about the conditions under which $\lim^{n} \mathbf{A} = 0$ for n > 1.

Question

In particular, is it consistent that $\lim^{n} \mathbf{A} = 0$ simultaneously for all $n \ge 1$?

Question

What happens with $\lim^{n} \mathbf{A}^{*}$ for other natural inverse systems \mathbf{A}^{*} ?

Some partial answers will come in the next lecture.

References

- Jeffrey Bergfalk, *Strong homology, derived limits, and set theory*, Fund. Math. **236** (2017), no. 1, 71–82.
- Alan Dow, Petr Simon, and Jerry E. Vaughan, Strong homology and the proper forcing axiom, Proc. Amer. Math. Soc. 106 (1989), no. 3, 821–828.
- S. Mardešić and A. V. Prasolov, Strong homology is not additive, Trans. Amer. Math. Soc. 307 (1988), no. 2, 725–744.
- Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989.