Nontrivial coherent families of functions

Lecture 2

Chris Lambie-Hanson
Institute of Mathematics
Czech Academy of Sciences

Winter School 2022

Review

Recall:

- For $f \in{ }^{\omega} \omega, I(f):=\left\{(i, j) \in \omega^{2} \mid j \leq f(i)\right\}$.
- Suppose that $\Phi=\left\langle\varphi_{f}: I(f) \rightarrow \mathbb{Z} \mid f \in{ }^{\omega} \omega\right\rangle$ is a family of functions.
- Φ is coherent if $\varphi_{f} \upharpoonright I(f \wedge g)=^{*} \varphi_{g} \upharpoonright I(f \wedge g)$ for all $f, g \in{ }^{\omega} \omega$.
- Φ is trivial if there is $\psi: \omega^{2} \rightarrow \mathbb{Z}$ such that $\varphi_{f}=^{*} \psi \upharpoonright I(f)$ for all $f \in{ }^{\omega} \omega$.
- $\mathfrak{d}=\aleph_{1} \Rightarrow$ there exists a nontrivial coherent family.
- After adding \aleph_{2}-many Cohen reals, every coherent family is trivial.
- $\mathrm{OCA} \Rightarrow$ every coherent family is trivial.

II. Homological origins

Inverse systems

Definition

Suppose that (Γ, \leq) is a directed set. An inverse system (of abelian groups) indexed by Γ is a family
$\mathbf{A}=\left\langle A_{u}, \pi_{u v} \mid u \leq v \in \Gamma\right\rangle$ such that:

- for all $u \in \Gamma, A_{u}$ is an abelian group;
- for all $u \leq v \in \Gamma, \pi_{u v}: A_{v} \rightarrow A_{u}$ is a group homomorphism;
- for all $u \leq v \leq w \in \Gamma$,

$$
\pi_{u w}=\pi_{u v} \circ \pi_{v w} .
$$

Level morphisms

If \mathbf{A} and \mathbf{B} are two inverse systems indexed by the same directed set, Γ, then a level morphism from \mathbf{A} to \mathbf{B} is a family of group homomorphisms $\mathbf{f}=\left\langle f_{u}: A_{u} \rightarrow B_{u} \mid u \in \Gamma\right\rangle$ such that, for all $u \leq v \in \Gamma$, $\pi_{u v}^{B} \circ f_{v}=f_{u} \circ \pi_{u v}^{A}$.

$$
\begin{aligned}
& \text { Avv } \xrightarrow{f_{v}} B_{v} \\
& \left\|_{u v}^{A}\right\|_{v}^{B} \\
& A_{v} \\
& \\
& f_{u} \\
& A_{v} \\
& B_{v}
\end{aligned}
$$

With this notion of morphism, the class of all inverse systems indexed by a fixed directed set Γ becomes a well-behaved category $A b^{\Gamma \mathrm{op}}$ (in particular, it is an abelian category).

Inverse limits

If \mathbf{A} is an inverse system indexed by Γ, then we can form the inverse limit, $\lim \mathbf{A}$, which is itself an abelian group. Concretely, $\lim \mathbf{A}$ can be seen as the subgroup of $\prod_{u \in \Gamma} A_{u}$ consisting of all sequences $\left\langle a_{u} \mid u \in \Gamma\right\rangle$ such that, for all $u \leq v \in \Gamma$, we have $a_{u}=\pi_{u v}\left(a_{v}\right)$.
If \mathbf{A} and \mathbf{B} are inverse systems and $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$, then \mathbf{f} lifts to a group homomorphism $\lim \mathbf{f}: \lim \mathbf{A} \rightarrow \lim \mathbf{B}$. Concretely, this is done by letting $\lim \mathbf{f}\left(\left\langle a_{u} \mid u \in \Gamma\right\rangle\right)=\left\langle f_{u}\left(a_{u}\right) \mid u \in \Gamma\right\rangle$ for all $\left\langle a_{u} \mid u \in \Gamma\right\rangle \in \lim \mathbf{A}$.
This turns lim into a functor from the category $A b^{\Gamma o p}$ of inverse systems indexed by Γ to the category $A b$ of abelian groups.

Question: How "nice" is this functor?

Exact sequences

In the category of inverse systems, kernels, images, and quotients can be defined pointwise in the obvious way. For example, if $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$ is a level morphism, then $\operatorname{ker}(\mathbf{f})$ can be seen as the inverse system $\left\langle\operatorname{ker}\left(f_{u}\right), \pi_{u v} \mid u \leq v \in \Gamma\right\rangle$, where $\pi_{u v}$ is simply $\pi_{u v}^{A} \upharpoonright \operatorname{ker}\left(f_{v}\right)$.
We say that a pair of morphisms $\mathbf{A} \xrightarrow{\mathbf{f}} \mathbf{B} \xrightarrow{\mathbf{g}} \mathbf{C}$ is exact at \mathbf{B} if $\operatorname{im}(\mathbf{f})=\operatorname{ker}(\mathbf{g})$. A short exact sequence is a sequence $\mathbf{0} \rightarrow \mathbf{A} \xrightarrow{\mathbf{f}} \mathbf{B} \xrightarrow{\mathbf{g}} \mathbf{C} \rightarrow \mathbf{0}$ that is exact at \mathbf{A}, \mathbf{B}, and \mathbf{C}.
In a short exact sequence as above, we have $\operatorname{ker}(\mathbf{f})=\mathbf{0}$ (\mathbf{f} is injective) and $\operatorname{im}(\mathbf{g})=\mathbf{C}$ (\mathbf{g} is surjective). It can be helpful to think of \mathbf{A} as a subobject of \mathbf{B} and to think of \mathbf{C} as the quotient B / A.

Exact functors

A functor F between abelian categories is said to be exact if it preserves short exact sequences, i.e., if, whenever $\mathbf{0} \rightarrow \mathbf{A} \xrightarrow{\mathbf{f}} \mathbf{B} \xrightarrow{\mathbf{g}} \mathbf{C} \rightarrow \mathbf{0}$ is exact in the source category of F, $\mathbf{0} \rightarrow F \mathbf{A} \xrightarrow{F \mathbf{f}} F \mathbf{B} \xrightarrow{F \mathrm{~g}} F \mathbf{C} \rightarrow \mathbf{0}$ is exact in the target category of F.

The inverse limit functor is left exact: if $\mathbf{0} \rightarrow \mathbf{A} \xrightarrow{\mathbf{f}} \mathbf{B} \xrightarrow{\mathbf{g}} \mathbf{C}$ is exact at \mathbf{A} and \mathbf{B}, then $\mathbf{0} \rightarrow \lim \mathbf{A} \xrightarrow{\lim \mathbf{f}} \lim \mathbf{B} \xrightarrow{\lim \mathbf{g}} \lim \mathbf{C}$ is exact at $\lim \mathbf{A}$ and $\lim \mathbf{B}$. However, it fails to be exact, i.e., even if $\operatorname{im}(\mathbf{g})=\mathbf{C}$, we might have $\operatorname{im}(\lim \mathbf{g}) \neq \lim \mathbf{C}$.

The failure of lim to be exact essentially amounts to the failure of \lim to preserve quotients: if the quotient system \mathbf{B} / \mathbf{A} is defined, then it need not be the case that $\lim \mathbf{B} / \mathbf{A} \cong \lim \mathbf{B} / \lim \mathbf{A}$.

An example $(\Gamma=\omega)$

$\lim \mathbf{A}=\lim \mathbf{B}=0$ and $\lim \mathbf{C}=\mathbb{Z} / 3$, so applying \lim to this short exact sequence yields $0 \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z} / 3 \rightarrow 0$, which is not exact at $\mathbb{Z} / 3$.

Derived functors

Given any left exact functor F, there is a general procedure for producing a sequence of (right) derived functors $\left\langle F^{n} \mid n \in \omega \backslash\{0\}\right\rangle$ that "measure" the failure of the functor F to be exact. These derived functors then take short exact sequences

$$
\mathbf{0} \longrightarrow \mathbf{A} \xrightarrow{\mathrm{f}} \mathrm{~B} \xrightarrow{\mathrm{~g}} \mathrm{C} \longrightarrow \mathbf{0}
$$

to long exact sequences

$$
\begin{aligned}
\mathbf{0} \longrightarrow & F \mathbf{A} \xrightarrow{F \mathbf{f}} F \mathbf{B} \xrightarrow{F \mathbf{g}} F \mathbf{C} \\
& \longrightarrow F^{1} \mathbf{A} \xrightarrow{F^{1} \mathbf{f}} F^{1} \mathbf{B} \xrightarrow{F^{1} \mathbf{g}} F^{\delta} \mathbf{C} \\
& F^{2} \mathbf{A} \xrightarrow{F^{2} \mathbf{f}} F^{2} \mathbf{B} \xrightarrow{F^{2} \mathbf{g}}{ }^{\delta} F^{2} \mathbf{C} \longrightarrow \ldots
\end{aligned}
$$

We will be interested in the derived functors $\left\langle\lim ^{n} \mid n \in \omega \backslash\{0\}\right\rangle$.

The system A

Consider the directed set (${ }^{\omega} \omega, \leq$), and define an inverse system $\mathbf{A}=\left\langle A_{f}, \pi_{f g} \mid f \leq g \in{ }^{\omega} \omega\right\rangle$ as follows:

- $A_{f}=\bigoplus_{l(f)} \mathbb{Z}$
- $\pi_{f g}: A_{g} \rightarrow A_{f}$ is the natural projection map.

In other words, A_{g} is the group of finitely supported functions $\varphi: I(g) \rightarrow \mathbb{Z}$, and, if $f \leq g$, then $\pi_{f g}$ takes such a function φ to $\varphi \upharpoonright I(f)$.

Question: What is $\lim \mathbf{A}$?
Answer: $\lim \mathbf{A} \cong \bigoplus_{\omega} \prod_{\omega} \mathbb{Z}$.
Define $\mathbf{B}=\left\langle B_{f}, \pi_{f g} \mid f \leq g \in{ }^{\omega} \omega\right\rangle$ similarly by letting $B_{f}=\prod_{l(f)} \mathbb{Z}$.
Question: What is $\lim \mathbf{B}$?
Answer: $\lim \mathbf{B} \cong \prod_{\omega^{2}} \mathbb{Z}$.

$\lim ^{1} \mathbf{A}$

There is a natural inclusion morphism $\mathbf{i}: \mathbf{A} \rightarrow \mathbf{B}$ and a quotient morphism q : $\mathbf{B} \rightarrow \mathbf{B} / \mathbf{A}=\left\langle B_{f} / A_{f}, \pi_{f g} \mid f \leq g \in{ }^{\omega} \omega\right\rangle$. Then the short exact sequence

$$
\mathbf{0} \longrightarrow \mathrm{A} \xrightarrow{\mathbf{i}} \mathrm{~B} \xrightarrow{\mathbf{q}} \mathrm{~B} / \mathrm{A} \longrightarrow \mathbf{0}
$$

gives rise to the long exact sequence
$0 \longrightarrow \lim \mathbf{A} \xrightarrow{\lim \mathbf{i}} \lim \mathbf{B} \xrightarrow{\lim \mathbf{q}} \lim \mathbf{B} / \mathbf{A}$

$$
\rightarrow \lim ^{1} \mathbf{A} \xrightarrow{\lim ^{1} \mathbf{i}} \lim ^{1} \mathbf{B} \xrightarrow{\lim ^{1} \mathbf{q}} \stackrel{\delta}{\lim ^{1} \mathbf{B} / \mathbf{A}}
$$

$$
\delta
$$

$\zeta \lim ^{2} \mathbf{A} \xrightarrow{\lim ^{2} \mathbf{i}} \lim ^{2} \mathbf{B} \xrightarrow{\lim ^{2} \mathbf{q}} \lim ^{\delta} \mathbf{B} / \mathbf{A} \longrightarrow \ldots$

$\lim ^{1} \mathbf{A}$

It can be shown that $\lim ^{n} \mathbf{B}=0$ for all $n \in \omega \backslash\{0\}$, so this long exact sequence becomes

It follows that $\lim ^{1} \mathbf{A} \cong \frac{\lim \mathbf{B} / \mathbf{A}}{\operatorname{im}(\lim \mathbf{q})}$ and, for $n \geq 1$, $\lim ^{n+1} \mathbf{A} \cong \lim ^{n}(\mathbf{B} / \mathbf{A})$.

$\lim ^{1} \mathbf{A}$

We have $\lim ^{1} \mathbf{A} \cong \frac{\lim \mathbf{B} / \mathbf{A}}{\operatorname{im}(\lim \mathbf{q})}$.
What is $\lim \mathbf{B} / \mathbf{A}$? Recall that

$$
\mathbf{B} / \mathbf{A}=\left\langle\prod_{l(f)} \mathbb{Z} / \bigoplus_{l(f)} \mathbb{Z}, \pi_{f g} \mid f \leq g \in{ }^{\omega} \omega\right\rangle .
$$

$\lim \mathbf{B} / \mathbf{A}$ therefore consists of families $\left\langle\left[\varphi_{f}\right] \mid f \in{ }^{\omega} \omega\right\rangle$ such that

- $\varphi_{f} \in B_{f}$, i.e., $\varphi_{f}: I(f) \rightarrow \mathbb{Z}$;
- $\left[\varphi_{f}\right]$ is the equivalence class of all functions $\varphi: I(f) \rightarrow \mathbb{Z}$ for which $\varphi_{f}-\varphi \in A_{f}$, i.e., all functions $\varphi: I(f) \rightarrow \mathbb{Z}$ that differ from φ_{f} in only finitely many places;
- for all $f \leq g \in^{\omega} \omega$, we have $\left[\varphi_{f}\right]=\left[\pi_{f g} \varphi_{g}\right]=\left[\varphi_{g} \upharpoonright I(f)\right]$, i.e., $\varphi_{f}={ }^{*} \varphi_{g} \upharpoonright I(f)$.
Thus, $\lim \mathbf{B} / \mathbf{A}$ consists precisely of (equivalence classes of) coherent families of functions!

$\lim ^{1} \mathbf{A}$

We have $\lim ^{1} \mathbf{A} \cong \frac{\lim \mathbf{B} / \mathbf{A}}{\operatorname{im}(\lim \mathbf{q})}$ and $\lim \mathbf{B} / \mathbf{A}$ consists of equivalence classes of coherent families of functions.

What is $\operatorname{im}(\lim \mathbf{q}) ? \lim \mathbf{q}: \lim \mathbf{B} \rightarrow \lim \mathbf{B} / \mathbf{A}$. Recall that $\lim \mathbf{B} \cong \prod_{\omega^{2}} \mathbb{Z}$, so $\lim \mathbf{B}$ can be thought of as the set of all $\psi: \omega^{2} \rightarrow \mathbb{Z}$. Such a function ψ gets sent by $\lim \mathbf{q}$ to $\left\langle[\psi \upharpoonright I(f)] \mid f \in{ }^{\omega} \omega\right\rangle$, which is (the equivalence class of) a coherent family that is trivial, as witnessed by ψ.

Also, (the equivalence class of) every trivial coherent family lies in $\operatorname{im}(\lim \mathbf{q})$: if $\left\langle\varphi_{f} \mid f \in{ }^{\omega} \omega\right\rangle$ is trivialized by $\psi: \omega^{2} \rightarrow \mathbb{Z}$, then $\left\langle\left[\varphi_{f}\right] \mid f \in{ }^{\omega} \omega\right\rangle=\lim \mathbf{q}(\psi)$.
So we can think of $\lim ^{1} \mathbf{A}$ as $\frac{\text { coherent families of functions }}{\text { trivial coherent families of functions }}$. In particular, $\lim ^{1} \mathbf{A}=0$ if and only if every coherent family of functions is trivial.

2-dimensional nontrivial coherence

Definition

Let $\Phi=\left\langle\varphi_{f g}: I(f \wedge g) \rightarrow \mathbb{Z} \mid f, g \in{ }^{\omega} \omega\right\rangle$.
1Φ is alternating if $\varphi_{f g}=-\varphi_{g f}$ for all $f, g \in{ }^{\omega} \omega$.
2Φ is 2-coherent if it is alternating and $\varphi_{f g}+\varphi_{g h}=^{*} \varphi_{f h}$ for all $f, g, h \in{ }^{\omega} \omega$. (All functions restricted to $I(f \wedge g \wedge h)$.)
3Φ is 2-trivial if there is a family

$$
\Psi=\left\langle\psi_{f}: I(f) \rightarrow \mathbb{Z} \mid f \in^{\omega} \omega\right\rangle
$$

such that $\psi_{g}-\psi_{f}=^{*} \varphi_{f g}$ for all $f, g \in{ }^{\omega} \omega$.
A 2-trivial family is 2-coherent. A non-2-trivial 2-coherent family Φ is an example of incompactness: each local family $\left\{\varphi_{f g} \mid f, g<h\right\}$ (for a fixed $h \in{ }^{\omega} \omega$) is 2-trivial, as witnessed by the family $\left\langle-\varphi_{f h} \mid f<h\right\rangle$, but the entire family is not.

A reframing

Coherence and triviality can be reframed in terms of oriented sums of functions indexed by maximal faces of simplices whose vertices are elements of ${ }^{\omega} \omega$. For a finite sequence $\vec{f}=\left\langle f_{0}, \ldots, f_{n-1}\right\rangle$, let $I(\vec{f})$ denote $I\left(f_{0}\right) \cap \ldots \cap I\left(f_{n-1}\right)$. In particular, we let $I(\emptyset)=\omega^{2}$.

A 1-dimensional family $\Phi=\left\langle\varphi_{f} \mid f \in{ }^{\omega} \omega\right\rangle$ is coherent if the oriented sum on the boundary of every 1 -simplex vanishes mod finite:

It is trivial if the information in the 1-dimensional family Φ is contained (mod finite) in a 0-dimensional family $\left\langle\psi_{\emptyset}: I(\emptyset) \rightarrow \mathbb{Z}\right\rangle$.

A reframing

A 2-dimensional family $\Phi=\left\langle\varphi_{f g}: I(f, g) \rightarrow \mathbb{Z} \mid f, g \in{ }^{\omega} \omega\right\rangle$ is coherent if the oriented sum on the boundary of every 2 -simplex vanishes mod finite:

A reframing
A 2-dimensional family $\Phi=\left\langle\varphi_{f g}: I(f, g) \rightarrow \mathbb{Z} \mid f, g \in{ }^{\omega} \omega\right\rangle$ is trivial if the information in the 2-dimensional family Φ is contained (mod finite) in a 1-dimensional family $\left\langle\psi_{f}: I(f) \rightarrow \mathbb{Z} \mid f \in{ }^{\omega} \omega\right\rangle$:

A reframing

A 3-dimensional family $\Phi=\left\langle\varphi_{f g h}: I(f, g, h) \rightarrow \mathbb{Z} \mid f, g, h \in{ }^{\omega} \omega\right\rangle$ is coherent if the oriented sum on the boundary of every 3 -simplex vanishes mod finite:

A reframing
A 3-dimensional family $\Phi=\left\langle\varphi_{f g h}: I(f, g, h) \rightarrow \mathbb{Z} \mid f, g, h \in{ }^{\omega} \omega\right\rangle$ is trivial if the information in the 3-dimensional family Φ is contained (mod finite) in a 2-dimensional family $\left\langle\psi_{f g} \mid f, g \in{ }^{\omega} \omega\right\rangle$:

$$
\begin{aligned}
& \psi_{f g}+\psi_{g h}+\psi_{h f}= \\
& \Psi_{g h}-\Psi_{f h}+\Psi_{f g}=* \Psi_{f g h}
\end{aligned}
$$

n-dimensional nontrivial coherence

Given a sequence $\vec{f}=\left(f_{0}, \ldots, f_{n-1}\right)$ and $i<n, \vec{f}^{i}$ is the sequence of length $n-1$ formed by removing f_{i} from \vec{f}.

Definition

Fix $n \geq 2$, and let $\Phi=\left\langle\varphi_{\vec{f}}: I(\wedge \vec{f}) \rightarrow \mathbb{Z} \mid \vec{f} \in\left({ }^{\omega} \omega\right)^{n}\right\rangle$.
1Φ is alternating if $\varphi_{\vec{f}}=\operatorname{sgn}(\sigma) \varphi_{\sigma(\vec{f})}$ for all $\vec{f} \in\left({ }^{\omega} \omega\right)^{n}$ and all permutations σ.
2Φ is n-coherent if it is alternating and $\sum_{i=0}^{n}(-1)^{i} \varphi_{\vec{f}^{i}}={ }^{*} 0$ for all $\vec{f} \in\left({ }^{\omega} \omega\right)^{n+1}$.
3Φ is n-trivial if there is an alternating family

$$
\left\langle\psi_{\vec{f}}: I(\wedge \vec{f}) \rightarrow \mathbb{Z} \mid \vec{f} \in\left({ }^{\omega} \omega\right)^{n-1}\right\rangle
$$

such that $\sum_{i=0}^{n-1}(-1)^{i} \psi_{\vec{f}^{i}}=^{*} \varphi_{\vec{f}}$ for all $\vec{f} \in\left({ }^{\omega} \omega\right)^{n}$.

$\lim ^{n}$ A and nontrivial coherence

Coherent and trivial can now be thought of as 1-coherent and 1-trivial.

Theorem (Mardešić-Prasolov ($n=1$), '88, [3], Bergfalk ($n \geq 2$), '17, [1])
Fix $n \geq 1$. Then $\lim ^{n} \mathbf{A}=0$ if and only if every n-coherent family

$$
\Phi=\left\langle\varphi_{\vec{f}} \mid \vec{f} \in\left({ }^{\omega} \omega\right)^{n}\right\rangle
$$

is n-trivial.

Thus, to prove that $\lim ^{n} \mathbf{A}=0$, it suffices to show that every n-coherent family is n-trivial.

Additivity of homology

Definition

A homology theory is additive on a class of topological spaces \mathcal{C} if, for every natural number p and every family $\left\{X_{i} \mid i \in J\right\}$ such that each X_{i} and $\coprod_{J} X_{i}$ are in \mathcal{C}, we have

$$
\bigoplus_{J} \mathrm{H}_{p}\left(X_{i}\right) \cong \mathrm{H}_{p}\left(\coprod_{J} X_{i}\right)
$$

via the map induced by the inclusions

$$
X_{i} \hookrightarrow \coprod_{J} X_{i}
$$

Additivity of strong homology

Let X^{n} denote the n-dimensional infinite earring space, i.e., the one-point compactification of an infinite countable sum of copies of the n-dimensional open unit ball. Let $\bar{H}_{p}(X)$ denote the $p^{\text {th }}$ strong homology group of X.

Theorem (Mardešić-Prasolov, '88, [3])
Suppose that $0<p<n$ are natural numbers. Then

$$
\bigoplus_{\mathbb{N}} \overline{\mathrm{H}}_{p}\left(X^{n}\right)=\overline{\mathrm{H}}_{p}\left(\coprod_{\mathbb{N}} X^{n}\right)
$$

if and only if $\lim ^{n-p} \mathbf{A}=0$.

Consequently, if strong homology is additive on closed subsets of Euclidean space, then $\lim ^{n} \mathbf{A}=0$ for all $n \geq 1$.

An infinite earring $\left(X^{1}\right)$

Condensed mathematics

The question of the consistency of $\lim ^{n} \mathbf{A}=0$ for $n \geq 1$ arose independently in recent work of Clausen and Scholze on condensed mathematics, a new approach to doing algebra in situations in which the algebraic structures carry topologies. They introduce the category of condensed abelian groups, which is a much nicer category algebraically than the category of topological abelian groups. The natural question of whether pro-abelian groups embed fully faithfully into condensed abelian groups is equivalent, in its simplest case, to the question of whether $\lim ^{n} \mathbf{A}=0$ for $n \geq 1$.

Looking ahead

We are now interested in the following general questions:

Question

What can be said about the conditions under which $\lim ^{n} \mathbf{A}=0$ for $n>1$.

Question

In particular, is it consistent that $\lim ^{n} \mathbf{A}=0$ simultaneously for all $n \geq 1$?

Question
What happens with $\lim ^{n} \mathbf{A}^{*}$ for other natural inverse systems \mathbf{A}^{*} ?
Some partial answers will come in the next lecture.

References

圊 Jeffrey Bergfalk, Strong homology, derived limits, and set theory, Fund. Math. 236 (2017), no. 1, 71-82.

Alan Dow, Petr Simon, and Jerry E. Vaughan, Strong homology and the proper forcing axiom, Proc. Amer. Math. Soc. 106 (1989), no. 3, 821-828.
R. S. Mardešić and A. V. Prasolov, Strong homology is not additive, Trans. Amer. Math. Soc. 307 (1988), no. 2, 725-744.

囯 Stevo Todorčević, Partition problems in topology, Contemporary Mathematics, vol. 84, American Mathematical Society, Providence, RI, 1989.

